7,082 research outputs found

    Efficient Management of Short-Lived Data

    Full text link
    Motivated by the increasing prominence of loosely-coupled systems, such as mobile and sensor networks, which are characterised by intermittent connectivity and volatile data, we study the tagging of data with so-called expiration times. More specifically, when data are inserted into a database, they may be tagged with time values indicating when they expire, i.e., when they are regarded as stale or invalid and thus are no longer considered part of the database. In a number of applications, expiration times are known and can be assigned at insertion time. We present data structures and algorithms for online management of data tagged with expiration times. The algorithms are based on fully functional, persistent treaps, which are a combination of binary search trees with respect to a primary attribute and heaps with respect to a secondary attribute. The primary attribute implements primary keys, and the secondary attribute stores expiration times in a minimum heap, thus keeping a priority queue of tuples to expire. A detailed and comprehensive experimental study demonstrates the well-behavedness and scalability of the approach as well as its efficiency with respect to a number of competitors.Comment: switched to TimeCenter latex styl

    Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts

    Get PDF
    The use of context in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. In this article we consider how to augment mobile devices with awareness of their environment and situation as context. Most work to date has been based on integration of generic context sensors, in particular for location and visual context. We propose a different approach based on integration of multiple diverse sensors for awareness of situational context that can not be inferred from location, and targeted at mobile device platforms that typically do not permit processing of visual context. We have investigated multi-sensor context-awareness in a series of projects, and report experience from development of a number of device prototypes. These include development of an awareness module for augmentation of a mobile phone, of the Mediacup exemplifying context-enabled everyday artifacts, and of the Smart-Its platform for aware mobile devices. The prototypes have been explored in various applications to validate the multi-sensor approach to awareness, and to develop new perspectives of how embedded context-awareness can be applied in mobile and ubiquitous computing

    VoodooFlash: authoring across physical and digital form

    Get PDF
    Design tools that integrate hardware and software components facilitate product design work across aspects of physical form and user interaction, but at the cost of requiring designers to work with other than their accustomed programming tools. In this paper we introduce VoodooFlash, a tool designed to build on the widespread use of Flash while facilitating design work across physical and digital components. VoodooFlash extends the existing practice of authoring interactive applications in terms of arranging components on a virtual stage, and provides a physical stage on which controls can be arranged, linked to software components, and appropriated with other physical design materials

    Privacy and Curiosity in Mobile Interactions with Public Displays.

    Get PDF
    Personal multimedia devices like mobile phones create new needs for larger displays distributed at specific points in the environment to look up information about the current place, playing games or exchanging multimedia data. The technical prerequisites are covered; however, using public displays always exposing information. In this paper we look at these issues from the privacy as well as from the curiosity perspective with several studies showing and confirming users’ reservations against public interactions. Interactive advertisements can exploit this best using specific types of interaction techniques

    Implementation strategies for hyperspectral unmixing using Bayesian source separation

    Get PDF
    Bayesian Positive Source Separation (BPSS) is a useful unsupervised approach for hyperspectral data unmixing, where numerical non-negativity of spectra and abundances has to be ensured, such in remote sensing. Moreover, it is sensible to impose a sum-to-one (full additivity) constraint to the estimated source abundances in each pixel. Even though non-negativity and full additivity are two necessary properties to get physically interpretable results, the use of BPSS algorithms has been so far limited by high computation time and large memory requirements due to the Markov chain Monte Carlo calculations. An implementation strategy which allows one to apply these algorithms on a full hyperspectral image, as typical in Earth and Planetary Science, is introduced. Effects of pixel selection, the impact of such sampling on the relevance of the estimated component spectra and abundance maps, as well as on the computation times, are discussed. For that purpose, two different dataset have been used: a synthetic one and a real hyperspectral image from Mars.Comment: 10 pages, 6 figures, submitted to IEEE Transactions on Geoscience and Remote Sensing in the special issue on Hyperspectral Image and Signal Processing (WHISPERS

    Thermoballistic spin-polarized electron transport in paramagnetic semiconductors

    Full text link
    Spin-polarized electron transport in diluted magnetic semiconductors (DMS) in the paramagnetic phase is described within the thermoballistic transport model. In this (semiclassical) model, the ballistic and diffusive transport mechanisms are unified in terms of a thermoballistic current in which electrons move ballistically across intervals enclosed between arbitrarily distributed points of local thermal equilibrium. The contribution of each interval to the current is governed by the momentum relaxation length. Spin relaxation is assumed to take place during the ballistic electron motion. In paramagnetic DMS exposed to an external magnetic field, the conduction band is spin-split due to the giant Zeeman effect. In order to deal with this situation, we extend our previous formulation of thermoballistic spin-polarized transport so as to take into account an arbitrary (position-dependent) spin splitting of the conduction band. The current and density spin polarizations as well as the magnetoresistance are each obtained as the sum of an equilibrium term determined by the spin-relaxed chemical potential, and an off-equilibrium contribution expressed in terms of a spin transport function that is related to the splitting of the spin-resolved chemical potentials. The procedures for the calculation of the spin-relaxed chemical potential and of the spin transport function are outlined. As an illustrative example, we apply the thermoballistic description to spin-polarized transport in DMS/NMS/DMS heterostructures formed of a nonmagnetic semiconducting sample (NMS) sandwiched between two DMS layers. We evaluate the current spin polarization and the magnetoresistance for this case and, in the limit of small momentum relaxation length, find our results to agree with those of the standard drift-diffusion approch to electron transport.Comment: Minor corrections; 3 references added; changed to single-column forma

    Smart Kitchens for People with Cognitive Impairments: A Qualitative Study of Design Requirements

    Get PDF
    Individuals with cognitive impairments currently leverage extensive human resources during their transitions from assisted living to independent living. In Western Europe, many government-supported volunteer organizations provide sheltered living facilities; supervised environments in which people with cognitive impairments collaboratively learn daily living skills. In this paper, we describe communal cooking practices in sheltered living facilities and identify opportunities for supporting these with interactive technology to reduce volunteer workload. We conducted two contextual observations of twelve people with cognitive impairments cooking in sheltered living facilities and supplemented this data through interviews with four employees and volunteers who supervise them. Through thematic analysis, we identified four themes to inform design requirements for communal cooking activities: Work organization, community, supervision, and practicalities. Based on these, we present five design implications for assistive systems in kitchens for people with cognitive deficiencies

    Gas station flash survey: a method for interviewing drivers

    Full text link
    Interviews and questionnaires are very important techniques to acquire information from the potential user. Surveys are one tool to understand users’ needs which is in particular helpful in the early phases of user interface design processes. To get meaningful information interface designers typically determine the target user group for an application. Most commonly, when designing in-car interfaces, the car drivers are the prime target group. In this paper we suggest a method to involve this group for a quick survey and we report our experience. The distinct features of this method are the location where the survey takes place (the gas station) and the length of the interview (2 to 5 minutes). This place ensures that the people actually use cars and have driven for sometime before the interview. The time is determined due to the task (filling the car) and people typically do not have plans how to spend this time and are happy to use this spare time to answer questions. (author's abstract
    corecore